The Renewable-Energy Revolution Will Need Renewable Storage

From the New York Times:

The German word Dunkelflaute means “dark doldrums.” It chills the hearts of renewable-energy engineers, who use it to refer to the lulls when solar panels and wind turbines are thwarted by clouds, night, or still air. On a bright, cloudless day, a solar farm can generate prodigious amounts of electricity; when it’s gusty, wind turbines whoosh neighborhoods to life. But at night solar cells do little, and in calm air turbines sit useless. These renewable energy sources stop renewing until the weather, or the planet, turns.

The dark doldrums make it difficult for an electrical grid to rely totally on renewable energy. Power companies need to plan not just for individual storms or windless nights but for Dunkelflaute that stretch for days or longer. Last year, Europe experienced a weeks-long “wind drought,” and in 2006 Hawaii endured six weeks of consecutive rainy days. On a smaller scale, factories, data centers, and remote communities that want to go all-renewable need to fill the gaps. Germany is decommissioning its nuclear power plants and working hard to embrace renewables, but, because of the problem of “intermittency” in its renewable power supply, it remains dependent on fossil fuels—including imported Russian gas.

The obvious solution is batteries. The most widespread variety is called lithium-ion, or Li-ion, after the chemical process that makes it work. Such batteries power everything from mobile phones to electric vehicles; they are relatively inexpensive to make and getting cheaper. But typical models exhaust their stored energy after only three or four hours of maximum output, and—as every iPhone owner knows—their capacity dwindles, little by little, with each recharge. It is expensive to collect enough batteries to cover longer discharges. And batteries can catch fire—sites in South Korea have ignited dozens of times in the past few years.

Venkat Srinivasan, a scientist who directs the Argonne Collaborative Center for Energy Storage Science (access), at the Argonne National Laboratory, in Illinois, told me that one of the biggest problems with Li-ion batteries is their supply chain. The batteries depend on lithium and cobalt. In 2020, some seventy per cent of the world’s cobalt came from the Democratic Republic of the Congo. “Unless we have diversity, we’re going to be in trouble,” Srinivasan said. Any disruption to the supply chain can strongly affect prices and availability. Moreover, a lot of water and energy are required for mining the metals, which can cause environmental damage, and some cobalt-mining operations involve child labor. Experts doubt that Li-ion prices will drop more than thirty per cent below their current levels without significant technological advancements—a drop that is still too small, according to the Department of Energy. We need to expand our capacity; by one estimate, we’ll require at least a hundred times more storage by 2040 if we want to shift largely to renewables and avoid climate catastrophe. We may somehow find clean and reliable ways to mine, distribute, and recycle the ingredients for Li-ion batteries. And yet that seems unlikely. Although we usually think about renewable energy in terms of its sources, such as wind turbines and solar panels, that’s only half the picture. Ideally, we’d pair renewable energy with renewable storage.

We already have one kind of renewable energy storage: more than ninety per cent of the world’s energy-storage capacity is in reservoirs, as part of a remarkable but unsung technology called pumped-storage hydropower. Among other things, “pumped hydro” is used to smooth out spikes in electricity demand. Motors pump water uphill from a river or a reservoir to a higher reservoir; when the water is released downhill, it spins a turbine, generating power again. A pumped-hydro installation is like a giant, permanent battery, charged when water is pumped uphill and depleted as it flows down. The facilities can be awe-inspiring: the Bath County Pumped Storage Station, in Virginia, consists of two sprawling lakes, about a quarter of a mile apart in elevation, among tree-covered slopes; at times of high demand, thirteen million gallons of water can flow every minute through the system, which supplies power to hundreds of thousands of homes. Some countries are expanding their use of pumped hydro, but the construction of new facilities in the United States peaked decades ago. The right geography is hard to find, permits are difficult to obtain, and construction is slow and expensive. The hunt is on for new approaches to energy storage.

Quidnet, a Houston-based startup, is one of many companies exploring the possibilities. Last month, I sat in an F-150 King Ranch pickup with Scott Wright, its vice-president of operations, and Jason Craig, its C.O.O., as we drove to one of its test sites, on a farm west of San Antonio. Fields and billboards whizzed by as Craig explained, from the back seat, that Quidnet had patented a new kind of pumped hydro. Instead of pumping water uphill, the company’s system sends it underground through a pipe reaching at least a thousand feet down. Later, the system lets the Earth squeeze the water back up under pressure, using it to drive generators. Wright and Craig are veterans of the oil and gas industry, and Quidnet’s technology is like a green riff on fracking. In that technique, fluid is injected underground, where it builds up pressure that fractures rocks, releasing natural gas. Quidnet uses some of the same equipment and expertise, but with a different goal: the water is meant to be sandwiched between layers of rock, forming underground reservoirs that can be released on demand.

As we drove, I asked about the blackouts Texas experienced in February of 2021, when a winter storm shut down gas plants for several days and left millions without power. More than two hundred people died. The crisis had many causes, including the fact that Texas is the only state whose power grid isn’t connected to grids in other states. “We were pulling buckets of water out of the neighbor’s pool to get toilets to flush,” Wright said. “It definitely screams for some way to store power to lessen the burden on the grid in times like that.”

The artificial underground reservoirs created by companies like Quidnet are known to engineers as “lenses,” because of their shape. (“I say whoopee cushion and people don’t like it,” Craig said.) Initially, Quidnet encountered skepticism about its ability to form lenses of the right size and shape. By the time I visited, however, it had successfully completed multiple pumping cycles in Texas, Ohio, and Alberta. The company has received thirty-eight million dollars in private and government funding, including contributions from Breakthrough Energy Ventures, established by Bill Gates.

A crane dropping green blocks that represent a battery filling up.
We need to vastly expand our energy-storage capacity if we’re to avoid climate catastrophe.

Quidnet has benefitted from an energy-storage gold rush. In 2018, the Department of Energy awarded thirty million dollars in funding to ten groups, including Quidnet, through a program called Duration Addition to electricitY Storage, or days. Before leaving office, President Donald Trump signed into law the Energy Act of 2020, which included the bipartisan Better Energy Storage Technology (best) Act, authorizing a billion dollars to be spent over five years on the “research, development, and demonstration” of new energy-storage technology. Many states are now setting storage-capacity targets, and in 2018 the Federal Energy Regulatory Commission issued Order 841, which integrates stored energy into the wholesale electricity market. “There’s been a recognition that this is a technology whose time has come,” Jason Burwen, of the American Clean Power Association, told me. But a vast distance separates an engineer’s whiteboard from reality. Many renewable-storage technologies receiving funding will turn out to be too impractical, expensive, or inefficient for widespread adoption.

As we approached the farm, Craig mused on the raw physicality of many companies’ approaches. The basic principles are ones you might recall from high-school physics. If you put effort into lifting an object, it stores potential energy; if you then let that object fall, its potential energy becomes kinetic energy, which is capable of powering a generator and creating electricity. The same holds for many physical actions. In addition to lifting weights, energy-storage companies are compressing air or water, or making objects spin, or heating them up. If you use clean energy to do the initial work and find a green way to store and release it, you’ve created an ecologically responsible battery alternative.

“I’m kind of surprised and encouraged that the solutions to the long-duration-energy-storage problem could be the caveman stuff,” Craig said. Batteries depend on “pretty sophisticated electrochemistry that quickly gets outside of what I understand. And yet the solutions may be picking up heavy stuff with cranes, picking up the earth with a hydraulic jack. I think there’s some fellas in Nevada that are putting rocks in a train and rolling it uphill, then they come back down. Like, Fred Flintstone would be comfortable with most of this stuff. It could be the way.”

We pulled into the farm’s long drive. A kettle of vultures circled overhead.

“You know what that means?” Craig asked.

Person hides under table during business meeting.

“One of these days, Jensen will come to understand that hiding under the table only works for so long.”
Cartoon by William Haefeli

“The last reporter who came out here?” I said.

They laughed. “That’s right. Too many bad questions.”

I already had one in mind. Was I about to see part of the future of green energy, or a curious and short-lived experiment in rural Texas?

Until recently, we didn’t have to think much about new ways to store our energy. Fossil fuels are a prehistoric energy repository, and we could unlock their energy by burning them and driving generators. There was always more fuel to burn. “Almost all electricity in the world is used as it’s made,” Bill Gross, a longtime investor in solar power and a co-founder of Energy Vault, one of the most highly capitalized new energy-storage companies, told me. Most power that isn’t consumed immediately is lost. The problem is that, with many technologies, “it actually costs more to store electricity than to make it,” he said. In many cases, solar and wind have become less expensive than coal and gas. But add the cost of storage, and renewables can lose to fossil fuels.

Energy is stored all around us, in all sorts of ways. A bottle of fizzy water in your fridge holds energy under pressure; a tower of books contains energy, which is released when it falls. On a larger scale, volcanic eruptions and avalanches release stored energy. But energy storage is most useful when it is predictable, convenient, and dense, packing lots of power into a small space. Climate change notwithstanding, fossil fuels meet all these requirements: by burning just a gallon of easily transported gasoline, you can release enough energy to move thousands of gallons of water from the bottom of a pumped-hydro station to the top.

Today’s Li-ion batteries are low-density by comparison, and renewable-storage systems also struggle to achieve density, convenience, and scale. The basic technology behind compressed-air energy storage goes back decades, and can involve pumping air into underground caverns, natural or artificial, then letting it out again. The first underground compressed-air facility was completed in 1978, in Germany; such systems can store and release vast amounts of energy. But, like pumped hydro, compressed-air facilities require the right geography and are expensive to build. They are also inefficient—typically, only half the energy put into pressurizing the gas can be retrieved.

Engineers are trying to improve density and efficiency. A Toronto-based company called Hydrostor has received more than three hundred million dollars in funding and is developing projects in California, Australia, and other places, to be brought online in the next five years. It stores compressed air in tanks, and holds on to the heat released during the air-compression process, which it then reapplies to the air during expansion, supercharging its ability to drive a turbine and generate electricity. A British company, Highview Power, is taking a more extreme tack, cooling air to more than three hundred degrees below zero, at which point it becomes a liquid. Liquid air is dense, and when Highview warms it, it gasifies rapidly, spinning turbine blades. Colin Roy, Highview’s executive chairman, told me that, when the company opens its tanks, air “explodes out with violent force.” It has built a prototype liquid-air system and is developing commercial plants in England and Spain.

Quidnet, too, is producing a refinement of pressure-based technology. At the company’s test site, we were greeted by Jacob and Sadie Schweers, the farm’s owners. About a year earlier, Quidnet had dispatched a drilling rig—a seventy-foot mast attached to a truck—to their property. Now a blue wellhead stood about ten feet tall, near a pump house the size of a shipping container, several yellow tanks, and a bunch of hoses. Water could be pumped from the tanks into the well, where it would be stored under pressure; then it could be released back to the tanks. Last month, Quidnet announced a pilot program to provide stored-energy technology to a utility in San Antonio.

We stepped inside the pump house to admire the pistons, the flywheel, and something called a pulsation dampener. A yellow five-hundred-horsepower diesel engine sat quietly in the back, ready to run the pump. “I love big machines and loud things and the smell of oil,” Wright said. In a commercial version of the system, an electric motor, ideally powered by clean energy, would pump the water, and act as a generator when the water returned.

Person goes to the trunk of a tree to get a spare tire for the broken tire swing.

Cartoon by Adam Douglas Thompson

As we walked back outside, into the hot sun, Wright gestured toward ten separate PVC pipes sticking out of the ground. They indicated the subterranean presence of tiltmeters, instruments for assessing the size and character of the lens by tracking the displacement of the rock; they can even sense the tidal tugging of the moon. We stood and chatted, and Craig said that the tanks would eventually be replaced by an attractive pond. Sadie Schweers told us that she likes to picture the whole farm running on solar panels and a Quidnet well.

People who work in energy often speak of the grid as if it had its own hungers and quirks. “The grid wants a diversity of assets,” Mateo Jaramillo, the C.E.O. of Form Energy, which makes “iron-air” batteries, told me. (The technology, which stores energy by rusting and un-rusting metal in a cycle, is one of a number of theoretical alternatives to Li-ion.) There’s room for many kinds of solutions in the clean grid to come; at the same time, the landscape is hyper-competitive. “Everyone’s competing against pumped-storage hydro and lithium-ion,” Scott Litzelman, the director of days, the Department of Energy program, told me. “Lithium-ion is just so dominant, given that there’s such a significant supply chain and manufacturing base.” Referring to the non-battery startups, he said, “You have these other nascent technologies that could be more competitive if they can get to scale. That’s the challenge across the industry. Everyone’s trying to get to that point to prove, first, the technical viability and the cost potential, and then prove this not in the laboratory, but at a massive field site.”

Shirley Meng, a materials scientist and engineer at the University of Chicago, told me that the world needs “a whole suite of storage methods.” Not all methods will find a niche, but, she said, “I think we are way, way underinvested. Because we are really imagining trying to rebuild the entire grid system.” Nathan Ratledge, a clean-energy researcher at Stanford, told me that energy storage could play an especially important role in places where power grids are still being built. Many countries in the developing world have a chance to leapfrog fossil fuels altogether, heading straight to renewable power, which is cheaper and less polluting. But a grid with a larger proportion of wind and solar requires more storage capacity to overcome intermittency. Renewable storage is “a win-win-win for the Global South,” Ratledge said. “It’s basically allowing people to jump really fast into the twenty-first century without dealing with all the outdated junk we built in the seventies and eighties and nineties.”

Driving back in Wright’s truck, I thought about how things might look if Quidnet’s wells make headway. Today’s pumped-hydro plants form picturesque lakes on the Earth’s surface, but approaches like Quidnet’s would create reservoirs of pressurized energy beneath it. The company envisions terrain dotted with wellheads about half a mile apart, and a pond for every four. Wind turbines might rise skyward. The Earth itself would be a kind of giant battery.

Bill Gross, the Energy Vault co-founder, began looking into energy storage after a long career in West Coast tech, during which he started a string of successful dot-coms and solar-power companies. He wondered if he could construct a system based on the same principles as pumped hydro, but with solids instead of liquids. Rather than pumping water uphill and releasing it downhill, could you stack weights using clean energy, then generate power by using pulleys to lower them? “I wanted to make a sort of virtual mountain,” he told me.

Gross and a civil engineer, Andrea Pedretti, started looking at options. They wanted to “build height cheaply,” Gross said. Steel was expensive. So was concrete, and producing it emitted carbon. They began working with a company called Cemex on the use of a “superplasticizer”—a polymer capable of holding dirt together, often used to build roads in low-income countries. Mix superplasticizer with local dirt, water, and a bit of cement, and you can make cheap blocks on site. “So we can basically make a mountain out of dirt,” Gross said. “And we can make that mountain every day, and unbuild that mountain every day.” Matching pumped hydro in scale would be ambitious. But even midsize mountains might be able to stash energy made at co-located solar farms or nuclear plants, or keep the servers running at data centers. Gross and Pedretti founded Energy Vault in 2017, with Robert Piconi, the company’s C.E.O. It has offices in Los Angeles and Switzerland.

Energy Vault’s first attempt at a system was EV1, a looming, Transformer-like tower crane with six arms. The idea was that such a crane would stack blocks in a wall around itself, then unstack them. Observers on the Internet had a field day pointing out what they perceived to be the system’s impracticality. (A YouTube video titled “The Energy Vault Is a Dumb Idea, Here’s Why” has been viewed two million times.) In any case, the company moved on to a new, enclosed design, called EVx. In renderings, it resembles a boxy automated warehouse forty stories tall. Elevators will use clean power to lift blocks weighing as much as thirty tons and put them on trolleys, which will move them toward the middle of the structure. When energy is needed, the blocks will be moved back to the elevators. As they descend, the elevators will power generators, producing new electricity. Energy Vault claims that the system will have a high round-trip efficiency, regenerating a great deal of the electricity it consumes. Yet even so EVx will have to move thousands of heavy blocks to store and release significant amounts of energy. Ordinarily, our energy use is an abstraction; Energy Vault’s approach reveals it in stark, physical terms.

The EVx demo is being developed in a bucolic Swiss mountain valley in the shadow of EV1. In March, Piconi gave me the sales pitch. After donning hard hats, vests, and eye protection, we stopped by the block-making machine, a big blue steel box. It compresses the blocks’ ingredients using seven thousand tons of force, then flips them upright, making a new one every fifteen minutes. “You don’t go buy this at Walmart,” Piconi said.

Nearby, we saw two of the trolleys that will carry the blocks to and from EVx’s elevators. I placed my hand on one of the hard plastic wheels. The company was still experimenting with trolley materials, Piconi said: “A lot of what we do is material science.” We headed to the control room, which turned out to be a trailer fitted with computers, where Frank Tybor, Energy Vault’s vice-president of engineering, sat with his Australian shepherd, Sydney. Previously, Tybor had been the principal engineer for launch and landing pads at SpaceX. (Sydney had “been in enough rocket control rooms that if you count backwards from ten to zero and nothing happens she gets upset,” Tybor said.) Energy Vault was similar to SpaceX, he told me, in that “it seems large and industrial, but the secret sauce is how we make it all work robustly.” On a big screen, we saw a car-size block trundling back and forth on a trolley as sensors gathered data about wear and tear.

Couple walking and pushing their baby in a stroller.

“We can’t leave her with my parents! Do you want her to turn out like me?”
Cartoon by Carolita Johnson

Outside, Piconi and I went to find the trolley we’d seen on the screen. We walked past tall blocks of various compositions, as though we were at a construction site for the pyramids, before coming upon Vahe Gabuchian, the test engineer who was controlling the trolley. He had studied fracture mechanics at Caltech, and wanted to know if any of the components would crack during thousands of miles of rolling and vibration. Nearby, a four-story structure made of I-beams offered a tiny preview of what a final EVx might look like. The warehouse, if it works, will be a moving puzzle. Software will need to orchestrate the motions of elevators and trolleys to keep power consistent as blocks accelerate, decelerate, and are lifted and lowered.

Developing energy storage is risky. Unlike Quidnet, Energy Vault is publicly traded; it has a market cap of more than a billion dollars, but its future is uncertain. The technology is still in its early stages, and it can be hard to tell how much of the excitement about the company reflects salesmanship, as opposed to viable engineering. No one has built a facility like EVx before, and the system contains moving parts that might break down more than expected. Venkat Srinivasan, the access director, noted that lithium-ion batteries are portable and, crucially, reliable. “If you’re operating on the grid, reliability is No. 1, 2, and 3, right?” he said. Utilities want products and companies that have a decade’s worth of data behind them. Investors are putting a lot of money into new energy firms, but “some of these bets won’t go the way we think,” he said. “There’ll be multiple reasons for it. Some of it could be technological, but it’s also execution.”

Li-ion batteries, despite their flaws, are a known quantity. The method being developed by Energy Vault isn’t. Still, the company isn’t alone in pursuing what’s known as “gravity storage.” Gravitricity, based in Scotland, recently concluded a demonstration that involved hefting a fifty-ton block up a tower, two stories at a time; it now plans to raise and lower single, thousand-ton blocks inside disused mine shafts. Two other companies, Gravity Power, in California, and Gravity Storage GmbH, in Hamburg, aim to place a massive weight at the bottom of a shaft and then pump water underneath to lift it. To withdraw energy, they’ll let the weight push the water down into a pipe and through a turbine. RheEnergise, based in Montreal, has come up with yet another take on pumped hydro, centered on a fluid that the company invented called R-19, which is two and a half times as dense as water; its system will move the fluid between tanks at the top and bottom of an incline. The work is still at the crowdfunding stage.

Just as you can store potential energy by lifting a block in the air, you can store it thermally, by heating things up. Companies are banking heat in molten salt, volcanic rocks, and other materials. Giant batteries, based on renewable chemical processes, are also workable. In so-called flow batteries, tanks can be used to manage electrolytes, which hold a charge. In hydrogen storage, electrolysis is used to separate hydrogen from oxygen in water; the hydrogen is then cached underground, or in aboveground tanks, as gas or liquid or part of ammonia. When it’s recombined with oxygen in a fuel cell, it forms water again and releases electricity.

Srinivasan told me that he often looks at new proposals and thinks, “Hey, that could be part of the solution.” Litzelman, of the Department of Energy, said that the range of ideas being pursued “suggests that no one has found a combination that hits every single requirement—very low cost, production at scale, high performance.” In one likely scenario, many technologies will proliferate, each solving a different problem. Some will ameliorate Dunkelflaute. Others will help the grid avoid congestion, or hold energy so that it can be bought and sold. Still others will assure “power quality,” smoothing out second-to-second electrical fluctuations. One smoothing technology currently in use is the flywheel: in advanced versions, masses of metal weighing a ton or more levitate in vacuums by means of magnets, as electric motors rotate them tens of thousands of times per minute. Generators then slow them down, retrieving their energy. (“The grid loves spinning metal,” one engineer told me.)

Litzelman believes that energy-storage systems will eventually bring down the over-all cost of decarbonization, but acknowledged that they might not be an easy sell. “The grid, in quotation marks, is not a customer,” one of his colleagues likes to say. Real customers are independent power producers, utilities, and companies that run factories or data centers. One challenge is figuring out who pays for what. It also matters how well a solution meshes with the grid—and that depends on many factors. Jaramillo, of Form, the iron-air-battery company, said, “You cannot look at one spec sheet and compare it to another spec sheet and say, ‘Ah, better round-trip efficiency, this one’s better.’ ” His company has used computer models that draw on data about weather and markets to figure out how its technologies might fit. Jaramillo happens to have a master’s in theology—a discipline that he said was surprisingly useful in understanding energy-storage systems. “All storage systems have trade-offs,” he said. “It’s not so different from humans. I am far from perfect. I’m very happily married only because my wife tends to not care as much about my flaws as somebody else might.” The important thing is that everything fits together.

It’s partly because storage strengthens the whole grid that it has found broad political support. Energy-storage technologies “are neutral as to the fuel source,” Leah Stokes, a political scientist at the University of California, Santa Barbara, told me. They “can store any kind of power—clean or dirty.” Storage may become a partisan issue if it begins clearly helping renewable energy to threaten fossil fuels. “The politicization of climate and energy policy comes from fossil-fuel companies that give enormous amounts to the Republican Party,” Stokes said. “This is not some kind of ideological cleavage. It’s fundamentally a material issue.” For the time being, storage policy exists in what Stokes calls the “fog of enactment,” where technologies are so new that we can’t yet identify their greatest beneficiaries. Inevitably, there will be some losers, even if as a society—and a planet—we come out ahead.

The grid as a whole may never be perfected. We may never be able to get away from technologies with undesirable by-products; we may always rely in part on fossil fuels and nuclear power, backed up by Li-ion batteries and natural-gas “peaker” plants, used at times of high demand. But it’s equally possible to envision a future in which some of the technology works out, and the globe is reshaped by a combination of renewable energy and renewable storage. In such a world, wind turbines and solar farms will spread over fields and coastlines, while geothermal plants draw power from below. Meanwhile, in caves and tanks, hydrogen and compressed air will flow back and forth. In industrial areas, energy warehouses will thrum with the movement of mass. In rural places, water will be driven belowground and then will gush back up. When the sun comes out and the wind rises, the grid will inhale, and electricity will get saved. During the doldrums, the grid will exhale, driving energy to factories, homes, offices, and devices. Instead of burning dead things, in the form of fossil fuels, we’ll create and store energy dynamically, in a living system.

When I got back from Switzerland, I took a walk. The sun warmed my face, and I blinked in the breeze. Twenty years ago, it seemed inconceivable to many people that sunlight and wind could provide enough energy to meet our needs. Slowly, our intuitions shifted to accommodate renewable energy. A similar revision could come for renewable storage. Looking up, I saw clouds hanging in the sky, on the verge of rain; they were a bank of potential energy. Below my feet, I imagined the ground dipping ever so slightly under the city’s weight, ready to spring back. Nature can help us generate power. Maybe it can help us hold on to it, too. ♦

Posted in energy | Leave a comment

What is Degrowth?

We have a problem.

There are currently two fundamentally different understandings of the word “degrowth”.

Jason Hickel’s view is that “Degrowth is a planned reduction of energy and resource use designed to bring the economy back into balance with the living world in a way that reduces inequality and improves human well-being.”

A planned reduction of energy and resource use which assumes that otherwise there will continue to be growth.

Tim Morgan’s view is that “People have been getting poorer in most Western advanced economies since the early 2000s. With the same fate now starting to overtake emerging market countries too, global prosperity has turned down. One way of describing this process is “de-growth”.

His view is that a reduction in energy use is already occurring.

Now that is becoming obvious that the world economy is shrinking I believe this must be the way to think of degrowth.

Degrowth is the opposite of growth.  It is happening now.  Albeit hidden by Government borrowing which creates an impression of growth.

It is no longer necessary to plan a reduction in energy use.  It is already happening.

More or less out of sight, the restructuring of our economy and society is already occurring.

Posted in collapse, de-growth, economy, energy | Leave a comment


Tim Morgan’s latest piece is worth reading.

However, I wonder whether his perception is seen generally.  The opening paragraphs introduce his idea,

A new ‘heavenly body’ has entered the cosmology of political and corporate decision. This new influence is the emerging reality that the economy is turning out, after all, to be an energy system, and that long-accepted ideas to the contrary are fallacious.

The concept of limits is replacing the paradigm of ‘infinite growth’.

Where decision-making is concerned, this emerging reality isn’t likely to have an immediately transformational effect. Established nostrums can have a tenacity that long out-lasts the demonstration of their falsity.

We’re not, then, about to see sudden, open and actioned acceptance of the fact that the economy is an energy rather than a monetary system.

Rather, we can expect to see energy reality exert an increasing gravitational pull on the tide of decisions and planning, most obviously in government and business. Policy statements may not change, but the thinking that informs planning and strategy undoubtedly will.

This gravitational effect is starting, as of now, to re-shape perceptions of the present, change ensuing “narratives” of the future, and trigger a process of realignment towards the implications of a world with meaningful constraints

Tim assumes that awareness of the reality of the economic system will influence decision-makers in top-down organisations.  I find that difficult to believe, bearing in mind that a shrinking economy has no growth in it.  I think the change is now occurring naturally, from the bottom up.  Yet to be seen because it would be so threatening to capitalism.  This is not me making a political statement, it will be how things will be.

Posted in de-growth, economy | Leave a comment

Global Transition: From growth to degrowth and top-down to bottom-up

First published in the Deep Transformation Network

People have been getting poorer in most Western advanced economies since the early 2000s. With the same fate now starting to overtake emerging market countries too, global prosperity has turned down. One way of describing this process is “de-growth”.
Tim Morgan

We are well used to having a growth mindset.  Even those who dislike growth see their dislike from a growth mindset.  Degrowth changes that.  There will be no more growth.

There is no consensus about the meaning of the word “degrowth”.  It is generally and wrongly understood as a policy idea – how things should be.

Degrowth is the opposite of growth.  It is happening now.  Albeit hidden by Government borrowing which creates an impression of growth.

Dr Tim Morgan’s blog Surplus Energy Economics provides convincing evidence that the global economy stopped growing in the early 2000s.   A view shared by an increasing number of economists and free-thinkers. But rejected by those who have a vested interest in growth. In other words, most of us.

As George Monbiot has said, “perpetual growth on a finite planet leads inexorably to environmental calamity”.

We can now dispel that possibility.  Perpetual growth is no longer possible because the world is now in a state of degrowth.

The idea of a “steady-state economy” also has to be abandoned.

The essence of degrowth is the decline of top-down hierarchical organisations and ways of seeing things, and the emergence of bottom-up grassroots, local doings and ways of seeing things.

It is important to understand the two fundamentally different ways of seeing things.  From the top-down and the bottom up.

Growth was the dominant culture for over 200 years.  It was a top-down way of organising things enabled by an economy powered by a supply of surplus energy.

In top-down organisations, politicians and private sector bosses and their minions enhanced their positions by creating layers of bureaucracy, each of which is beholden to the layer above.  It is a natural empire-building process driven by individuals seeking the power that comes with having more minions and related spending.

Degrowth is a bottom-up process that occurs because the economy is unavoidably shrinking as a result of the declining surplus of fossil fuels.

It is a process in which top-down organisations shrink and eventually disappear as a result of de-layering. At the same time, individual and cooperative activities develop from the grassroots.

The activities (doings) undertaken by bottom-up communities will be quite different from the formal processes (aims, objectives, evaluation of options and policies) undertaken by top-down organisations.

The future will not just be a replacement of power from top to bottom.  The two cultures and associated mindsets are quite different.

As an example, the top-down health and social care organisations which exist in the UK will not exist once the (paradigm) change has taken place. The agonising now going on about how to reorganise and fund these organisations to cope with growth can be seen as symptoms of the need for transition.  It remains to be seen what will emerge from the bottom-up in response to de-growth.

As the top-down economy shrinks, new lifestyles and local communities will emerge.  I believe they will be family-based life-affirming cultures.

The process can be seen as the top-down culture of growth, based on imagined quantitative measures of everything, being replaced naturally by local cultures where the quality of life is all-important.

Quality instead of quantity.

A natural evolution from a predominant mindset based on growth to an ecological mindset.  Maybe leading to the emergence of new indigenous knowledge? A different kind of growth.

From a life of top-down glumness to the “always smiling” life of the Ladakhi people, before tourists arrived.  As described by Helena Norberg-Hodge in Ancient Cultures. 

From my home in rural England, I sense that bottom-up doings are already happening. Mostly hard to see because they are individual and family-based.

If I am right it will, in the end, be a nicer future than the way things are now.



Posted in de-growth, economy, evolution | 2 Comments

Think of your car as a home power supply on wheels

Copied from The Conversation

Think of your car as a home power supply on wheels.

Can my electric car power my house? Not yet for most drivers, but vehicle-to-home charging is coming

Published: March 29, 2022 1.35pm BST

Author Seth Blumsack Professor of Energy and Environmental Economics and International Affairs, Penn State

Manufacturers introduce new models of electric vehicles, demand for them is growing steadily. New EV sales in the U.S. roughly doubled in 2021 and could double again in 2022, from 600,000 to 1.2 million. Auto industry leaders expect that EVs could account for at least half of all new U.S. car sales by the end of the decade.

EVs appeal to different customers in different ways. Many buyers want to help protect the environment; others want to save money on gasoline or try out the latest, coolest technology.

In areas like California and Texas that have suffered large weather-related power failures in recent years, consumers are starting to consider EVs in a new way: as a potential electricity source when the lights go out. Ford has made backup power a selling point of its electric F-150 Lightning pickup truck, which is due to arrive in showrooms sometime in the spring of 2022. The company says the truck can fully power an average house for three days on a single charge.

So far, though, only a few vehicles can charge a house in this way, and it requires special equipment. Vehicle-to-home charging, or V2H, also poses challenges for utilities. Here are some of the key issues involved in bringing V2H to the mainstream.

Gasoline can flow only one way, from pump to car, but with some technical advances, EVs soon will be able to send power back to homes.

The ABCs of V2H

The biggest factors involved in using an EV to power a home are the size of the vehicles’s battery and whether it is set up for “bidirectional charging.” Vehicles with this capacity can use electricity to charge their batteries and can send electricity from a charged battery to a house.

There are two ways to judge how “big” a battery is. The first is the total amount of electric fuel stored in the battery. This is the most widely publicized number from EV manufacturers, because it determines how far the car can drive.

Batteries for electric sedans like the Tesla Model S or the Nissan Leaf might be able to store 80 to 100 kilowatt-hours of electric fuel. For reference, 1 kilowatt-hour is enough energy to power a typical refrigerator for five hours.

A typical U.S. home uses around 30 kilowatt-hours per day, depending on its size and which appliances people use. This means that a typical EV battery can store enough electric fuel to supply the total energy needs of a typical home for a couple of days.

The other way to assess the capacity of an EV battery is its maximum power output in backup power mode. This represents the largest amount of electric fuel that could be delivered to the grid or a house at any given moment. An EV operating in backup mode will typically have a lower maximum power output than when in driving mode. The backup power capacity is important, because it indicates how many appliances an EV battery could power at once.

This figure is not as widely publicized for all EVs, in part because vehicle-to-home charging hasn’t yet been widely deployed. Ford has advertised that its electric F-150 would have a maximum V2H power output of 2.4 kilowatts, potentially upgradable to 9.6 kilowatts – about the same as a single higher-end Tesla Powerwall home energy storage unit.

On the low end, 2.4 kilowatts is enough power to run eight to 10 refrigerators at the same time and could run much of a typical household continuously for a few days – or much more if the electricity is used sparingly. On the high end, a power level of 9.6 kilowatts could run more appliances or higher-powered ones, but that level of usage would drain the battery faster.

Storing power when it’s cheaper

To draw home power from their cars, EV owners need a bidirectional charger and an electric vehicle that is compatible with V2H. Bidirectional chargers are already commercially available, though some can add several thousand dollars to the price of the car.

A limited number of EVs on the market now are compatible with V2H, including the Ford Lightning, Nissan Leaf and Mitsubishi Outlander. General Motors and Pacific Gas & Electric plan to test V2H charging in California in mid-2022 using multiple GM electric vehicles.

Some homeowners might hope to use their vehicle for what utility planners call “peak shaving” – drawing household power from their EV during the day instead of relying on the grid, thus reducing their electricity purchases during peak demand hours. To do this, they might need to install special metering equipment that can control both the discharging of the vehicle battery and the flow of power from the grid to the home.

Peak shaving makes the most sense in areas where utilities have time-of-use electric pricing, which makes power from the grid much more expensive during the day than at night. A peak-shaving household would use cheap electricity at night to charge the EV battery and then store that electricity to use during the day, avoiding high electricity prices.

Utilities and the future of V2H

While V2H capabilities exist now, it will likely be a little while before they see widespread adoption. The market for V2H-compatible electric vehicles will need to grow, and the costs of V2H chargers and other equipment will need to come down. As with Tesla’s Powerwall, the biggest market for V2H will probably be homeowners who want backup power for when the grid fails but don’t want to invest in a special generator just for that purpose.

Enabling homeowners to use their vehicles as backup when the power goes down would reduce the social impacts of large-scale blackouts. It also would give utilities more time to restore service – especially when there is substantial damage to power poles and wires, as occurred during Hurricane Ida in Louisiana in August 2021.

Power companies will still have to spend money building and maintaining the grid to provide reliable service. In some areas, those grid maintenance costs are passed on to customers through peak demand charges, meaning that people without V2H – who will be more likely to have lower incomes – may well bear a greater share of those costs than those with V2H, who will avoid purchasing peak power from the grid. This is especially true if lots of EV owners use rooftop solar panels to charge their car batteries and use those vehicles for peak shaving.

Still, even with V2H, electric vehicles are a huge potential market for electric utilities. Bidirectional charging is also an integral part of a broader vision for a next-generation electric grid in which millions of EVs are constantly taking power from the grid and giving it back – a key element of an electrified future. First, though, energy planners will need to understand how their customers use V2H and how it may affect their strategies for keeping the grid reliable.

Posted in domestic, energy | Leave a comment

Why your fish and chips may cost a lot more

An example of what has become a discretionary market at today’s prices.  A market that was essential in the post-WW2 era.

Posted in economy, food | Leave a comment

Why we still don’t yet know how bad climate migration will get

The latest 3,600-page report from the Intergovernmental Panel on Climate Change, the United Nations’ climate research unit, examines the consequences of rising average temperatures for people around the world.


Myths and misconceptions are undermining efforts to deal with migration

There’s a subtext to many public discussions around climate change and migration, that a warmer world will lead to hordes of people fleeing poorer countries for wealthier ones, threatening the safety and the economy of any place they go. Institutions like the US Defense Department describe climate-induced migration as a potential security threat. Such framing has fueled media panics and xenophobia.

But this narrative is inaccurate and misses crucial context, according to Farbotko. For one thing, the IPCC notes that the vast majority of migration, from climate change or from other factors, occurs within the borders of a country.

And while climate change can bring immense pressure to move, migration is often a last resort. People often do all that they can to stay where they are, according to Gabrielle Wong-Parodi, an assistant professor of earth system science at Stanford University. That makes it difficult to get people out of the way of likely threats like wildfires or coastal flooding.

“People say that they’re going to move, yet it’s unlikely they will move unless they are forcibly moved in response to some climate-related extreme, like their home gets destroyed,” said Wong-Parodi.

On the other hand, it means people are willing to try a lot of different strategies to deal with the effects of warming, even in precarious places like islands facing rising sea levels. In Fiji, for example, the government is already working to relocate coastal communities further inland. In Vanuatu, officials are integrating climate change and migration into all aspects of their decision-making, including sectors like housing and education.

“In both cases, the focus is on in-country solutions, not international border crossing,” Farbotko said.


Posted in climate change, migration | Leave a comment

These foods could soon be in short supply due to the war in Ukraine

From the Climate & Economy website:


Posted in food | Leave a comment

How to Build a Bike Generator with Control Panel

From the Low Tech Magazine:

We built a pedal-powered generator and controller, which is practical to use as an energy source and exercise machine in a household — and which you can integrate into a solar PV system. We provide detailed plans to build your own, using basic skills and common hand tools.

Posted in book | Leave a comment

The Overton Window

Why does the Government see global warming as a problem and not see degrowth as reality?

Those of us who are committed to the idea that economic degrowth is unavoidable just cannot understand why intelligent powers-that-be will not even acknowledge that it is possible, let alone inevitable.

The Mackinac Center for Public Policy provides a clue as to why this is.

The Overton Window is a model for understanding how ideas in society change over time and influence politics.

The core concept is that politicians are limited in what policy ideas they can support — they generally only pursue policies that are widely accepted throughout society as legitimate policy options. These policies lie inside the Overton Window.

Other policy ideas exist, but politicians risk losing popular support if they champion these ideas. These policies lie outside the Overton Window

The Overton Window was developed in the mid-1990s by the late Joseph P. Overton, who was the senior vice president at the Mackinac Center for Public Policy at the time of his death in 2003.

It provides a nice explanation of why degrowth is politically unacceptable at present.  The public is not yet aware that it is how things are.  So, the idea is unthinkable.

Political commentator Joshua Treviño has postulated that there are  six degrees of acceptance of public ideas:

  1. Unthinkable
  2. Radical
  3. Acceptable
  4. Sensible
  5. Popular
  6. Policy

At present global warming and degrowth, both seem to lead to the same end state.

Global warming began to be seen as radical when The Kyoto Protocol became international law in 2005.  Now, in 2022, it is being half-heartedly included in UK policies.

Degrowth is unthinkable to most people.  No government would dare mention it publicly, or even talk about it behind the scenes, for fear of leakage into the public domain.  Just like the word “cancer” was never uttered in polite society when I was a child.

Degrowth will have to move away from being seen as unthinkable to be acceptable.  A big jump, bearing in mind all the hurdles involved.  Including abandoning the societal mindset of consumerism.

For the time being the idea of degrowth is beyond the pale.   It will remain so, for as long as society believes that declining prosperity, inflation and widespread forecasts of doom and gloom are the results of economic mismanagement, the covid pandemic, the war in Ukraine and the huge outstanding Government debt.

Sooner or later degrowth will fill the window of what the public will regard as radical, even acceptable.

For this to happen degrowth must be seen as inevitable.  It is how things will be.  It is not a left or right-wing fad or a quirky idea dreamt up by a counter-culture movement.

Political decisions will be required once the inevitability of degrowth is recognised.  To enable new ways of doing things and to deal with perceived inequities.

When that happens the mindset of unending growth will begin to be undermined.  We will then be heading towards a new normal.

In the meantime, with my consumerist mindset hat on, I fear we will have seemingly unending and aimless dreadfulness.  But try taking that hat off.  Then you will begin to see the future in a new light.  New windows will be opened.

Barry Cooper
15 March 2022

Posted in de-growth, economy, society | 1 Comment